	——— Васк Р	APER		
Time:	10:00-13:00, June 9, 2022.	Course name:	Algebra II	
Degree:	MMath.	Year:	1 st Year, 2 nd Semester; 2021–2022.	
Course instructor:	Ramdin Mawia.	Total Marks:	60.	

Attempt four of the following problems, including problems n° 3 & n° 4.

GROUP THEORY

1. Describe all groups of order 20 (up to isomorphism).	15	
2. Define a solvable group. Show that any group of order p^2q is solvable, where $p < q$ are odd primes.		
3. Decide whether the following statements are true or false, with brief but complete justifications (any five):		
(a) If G is a cyclic group of order n and d is a divisor of n , then G has a subgroup of order d . (b) Every group of order 51 is cyclic.		
(c) If a finite group G acts transitively on a finite set X, then $ X $ divides $ G $.		
(d) The number of Sylow <i>p</i> -subgroups of $GL_2(\mathbb{F}_5)$ is 6.		
(e) If $1 \to F \to E \to G \to 1$ is a short exact sequence of groups with F and G cyclic of prime order, then E cannot be cyclic.		
(f) If P and Q are Sylow p-subgroups of G with $ P = Q = p^2$ and $ P \cap Q \ge p$, then $P = Q$.		
GALOIS THEORY		
4. When do we say that a field extension is separable?	15	
(a) Define the separable degree and prove that it is bounded by the degree of the extension (for finite extensions).		
(b) Is it true that every finite extension of a finite field is separable? Justify.		
5. State and prove the Fundamental Theorem of Galois Theory.	15	
6. Find the Galois groups of two of the following polynomials, with justifications:		
(a) $X^4 + 3X + 6 \in \mathbb{Q}[X]$. (b) $X(X^2 + 134)(X^2 - 16) + 2 \in \mathbb{Q}[X]$. (c) $X^3 + X + 3 \in \mathbb{Q}[X]$.		
7. State whether the following statements are true or false, with brief but complete justifications (any five):	15	
 (a) The multiplicative group of a finite field is cyclic. (b) If K/k is a cyclic extension of degree n, then K contains a primitive nth root of unity. (c) The angle \(\pi/1\) is constructible. 		
(c) The angle $\pi/15$ is constructible.		

- (d) Roots of the polynomial $X(X^2 + 14)(X^2 4) + 2 \in \mathbb{Q}[X]$ are expressible in radicals.
- (e) Let k be a field of characteristic p > 0. If some extension of k contains a primitive nth root of unity, then p does not divide n.
- (f) The separable closure of ${\mathbb Q}$ in ${\mathbb C}$ is the same as its algebraic closure.
- (g) -1 is a square in the field $\mathbb{Q}[\sqrt[4]{-3}]$.

